periodicity theorem - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

periodicity theorem - translation to ρωσικά

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem

periodicity theorem      

математика

теорема периодичности

divergence theorem         
  • n}}
  • A volume divided into two subvolumes. At right the two subvolumes are separated to show the flux out of the different surfaces.
  • The volume can be divided into any number of subvolumes and the flux out of ''V'' is equal to the sum of the flux out of each subvolume, because the flux through the <span style="color:green;">green</span> surfaces cancels out in the sum. In (b) the volumes are shown separated slightly, illustrating that each green partition is part of the boundary of two adjacent volumes
  • </math> approaches <math>\operatorname{div} \mathbf{F}</math>
  • The divergence theorem can be used to calculate a flux through a [[closed surface]] that fully encloses a volume, like any of the surfaces on the left. It can ''not'' directly be used to calculate the flux through surfaces with boundaries, like those on the right. (Surfaces are blue, boundaries are red.)
  • The vector field corresponding to the example shown. Vectors may point into or out of the sphere.
GENERALIZATION OF THE FUNDAMENTAL THEOREM IN VECTOR CALCULUS
Gauss' theorem; Gauss's theorem; Gauss theorem; Ostrogradsky-Gauss theorem; Ostrogradsky's theorem; Gauss's Theorem; Divergence Theorem; Gauss' divergence theorem; Ostrogradsky theorem; Gauss-Ostrogradsky theorem; Gauss Ostrogradsky theorem; Gauss–Ostrogradsky theorem

математика

теорема о дивергенции

теорема Гаусса-Остроградского

formal theorem         
  • planar]] map with five colors such that no two regions with the same color meet. It can actually be colored in this way with only four colors. The [[four color theorem]] states that such colorings are possible for any planar map, but every known proof involves a computational search that is too long to check by hand.
  • universality]]) resembles the [[Mandelbrot set]].
  • strings of symbols]] may be broadly divided into [[nonsense]] and [[well-formed formula]]s. A formal language can be thought of as identical to the set of its well-formed formulas. The set of well-formed formulas may be broadly divided into theorems and non-theorems.
IN MATHEMATICS, A STATEMENT THAT HAS BEEN PROVED
Theorems; Proposition (mathematics); Theorum; Mathematical theorem; Logical theorem; Formal theorem; Theorem (logic); Mathematical proposition; Hypothesis of a theorem

математика

формальная теорема

Ορισμός

Periodicity
·noun The quality or state of being periodical, or regularly recurrent; as, the periodicity in the vital phenomena of plants.

Βικιπαίδεια

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.

Μετάφραση του &#39periodicity theorem&#39 σε Ρωσικά